# Clinicomorphological features of gPALB2-associated breast cancer: real-world single-institution experience of NGS testing in Russia

Anna Stroganova<sup>1</sup>, Alexandra Lebedeva<sup>2</sup>, Vladimir Fedko<sup>3</sup>, Vladislav Mileyko<sup>2</sup>, Tatyana Lisitsa<sup>1</sup>, Alexandra Kavun<sup>2</sup>, Ilya Prokopev<sup>1</sup>, Elena Kovalenko<sup>3</sup>, Elena Artamonova<sup>3</sup>

<sup>1</sup>Laboratory of Molecular Genetic Diagnostics, National Medical Research Center of Oncology named after N.N. Blokhin, Moscow, Russian Federation, 2 OncoAtlas LLC, Moscow, Russian Federation, 3 Chemotherapy department, National Medical Research Center of Oncology named after N.N. Blokhin, Moscow, Russian Federation

\*Corresponding author: stroganova\_am@mail.ru

Disclosure statement.

10.26

Number of patients

All authors, including the presenting author, have no conflicts of interest to declare.

**Parameters** 

Age, years

## Background

Current Russian guidelines recommend testing for BRCA1/2 mutations for breast cancer patients, while ESMO guidelines include the analysis of germline *PALB2* (*gPALB2*) mutations for PARP inhibitor therapy. Here, we aimed to determine the frequency of *gPALB2* mutations in Russian breast cancer patients, its distribution between histological/molecular subtypes of the disease and treatment outcomes associated with *gPALB2* mutations.

#### Methods

Medical records of 3800 breast cancer patients treated and routinely tested via NGS ("Solo-test ABC plus" panel, OncoAtlas, Russia) for the mutations in the *BRCA1/2*, *PALB2* and other HRR genes at the N.N. Blokhin National Medical Research Center of Oncology (Moscow, Russia) in 2022–2024 were retrospectively analyzed.

#### Results

Germline *PALB2* mutations were observed in 39 (1.03%) patients, consistent with global data. The most common mutations were c.509\_510del (p.Arg170llefsTer14, 25.64%), c.1592del (p.Leu531CysfsTer30, 20.51%), and c.172\_175del (p.Gln60ArgfsTer7, 10.3%). At diagnosis, disease stages were as follows: I = 10 (25.6%), II = 14 (35.9%), III = 12 (30.8%), IV = 3 (7.7%) patients. Invasive ductal carcinoma was the main histological type—33 (84.6%) pts (G2: 19, G3: 12, G1: 2). Invasive lobular carcinoma occurred in 5 (12.8%) patients (G2: 4, G3: 1). Metaplastic carcinoma G3 was identified in 1 (2.6%) patient. ER+ breast cancer predominated (31; 79.49%), and 4 (12.9%) of these cases were HER2+. Triple-negative phenotype was found in 7 (17.95%) patients. Contralateral breast cancer was diagnosed in 4 (10.26%) patients, all with ER+ HER2- metachronous breast cancer. Neoadjuvant chemotherapy (NAC, anthracyclines/taxanes) was administered to 9 (23.08%) patients. Morphological assessment demonstrated a pCR rate of 33.3% (3/9), RCB-I = 11.1% (1/9), RCB-II = 44.4% (4/9), RCB-III = 11.1% (1/9).

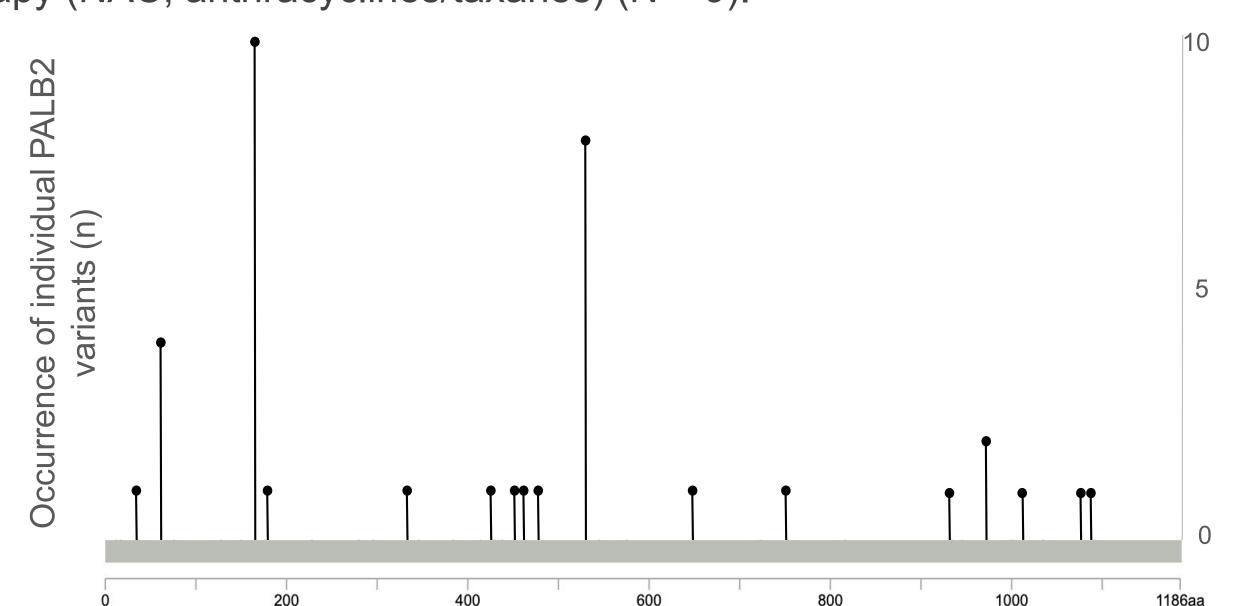
### Conclusions

In our study, 1% of breast cancer were found to carry germline *PALB2* mutations. Carriers had HR+ breast cancer, and HER2+ and triple-negative breast cancer, indicating that all testing should be performed regardless of subtype. Future directions should be focused on improving Russian guidelines in terms of germline *PALB2* testing for tailoring therapy.

| M ± m                   | 49 ± 2.13           |          |       |  |  |
|-------------------------|---------------------|----------|-------|--|--|
| Median                  | 44 (range, 34 - 79) |          |       |  |  |
| istribution by stages   |                     |          |       |  |  |
| Stage I                 | 10                  |          | 25.64 |  |  |
| Stage II                | 14                  |          | 35.9  |  |  |
| Stage III               | 12                  |          | 30.77 |  |  |
| Stage IV                | 3                   |          | 7.69  |  |  |
| istological subtype an  | d degree of ma      | lignancy |       |  |  |
| Invasive ductal carcin  | noma                |          |       |  |  |
| G1                      | 2                   | 5.13     |       |  |  |
| G2                      | 19                  | 48.72    | 84.62 |  |  |
| G3                      | 12                  | 30.77    |       |  |  |
| Invasive lobular carc   | inoma               |          |       |  |  |
| G1                      | 0                   |          |       |  |  |
| G2                      | 4                   | 10.26    | 12.82 |  |  |
| G3                      | 1                   | 2.56     |       |  |  |
| Metaplastic carcinom    | na                  |          |       |  |  |
| G1                      | 0                   |          |       |  |  |
| G2                      | 0                   |          | 2.56  |  |  |
| G3                      | 1                   | 2.56     |       |  |  |
| olecular biological su  | btype               |          |       |  |  |
| Iuminal A               | 11                  |          | 28.21 |  |  |
| Iuminal B HER2-         | 16                  | 41.02    |       |  |  |
| luminal B HER2+         | 4                   | 10.26    |       |  |  |
| HER2+ non-luminal       | 1                   | 2.56     |       |  |  |
| triple-negative         | 7                   | 17.95    |       |  |  |
| ontralateral breast car | ncer (10.26%)       |          |       |  |  |

**Table 1 (right).** Characteristics of patients (N = 39). *PALB2* mutations were found in all molecular subtypes.

| c.509_510del   |   |   |            |   |   |    |
|----------------|---|---|------------|---|---|----|
| c.1592del      |   |   |            |   |   |    |
| c.172_175del   |   |   | ::a:<br>(p |   |   |    |
| c.2920_2923del |   |   |            |   |   |    |
| c.93dup        |   |   |            |   |   |    |
| c.508dup       |   |   |            |   |   |    |
| c.1283_1284del |   |   |            |   |   |    |
| c.3256C>T      |   |   |            |   |   |    |
| c.1384del      |   |   |            |   |   |    |
| c.2815_2822del |   |   |            |   |   |    |
| c.2257C>T      |   |   |            |   |   |    |
| c.3285dup      |   |   |            |   |   |    |
| c.1424dup      |   |   |            |   |   |    |
| c.2748+1G>C    |   |   |            |   |   |    |
| c.1000_1013del |   |   |            |   |   |    |
| c.1451T>A      |   |   |            |   |   |    |
| c.1958_1959del |   |   |            |   |   |    |
| c.3165C>A      |   |   |            |   |   |    |
|                | 0 | 2 | Δ          | 6 | 8 | 10 |
|                | U | _ |            | 0 | U | 10 |


**Figure 1 (top).** Types of germline mutations in the *PALB2* gene in patients with breast cancer observed in our cohort.

|         | Molecular biological | subtype | Total | %     |
|---------|----------------------|---------|-------|-------|
| RCB 0   | Luminal B HER2+      | 1/3     | 3     | 33.3% |
|         | Triple-negative      | 2/3     |       |       |
| RCB I   | Luminal B HER2-      | 1/2     | 1     | 11.1% |
|         | Luminal B HER2+      | 2/3     | 4     | 44.5% |
| RCB II  | HER2+ non-luminal    | 1/1     |       |       |
|         | Triple-negative      | 1/3     |       |       |
| RCB III | Luminal B HER2-      | 1/2     | 1     | 11.1% |
|         | Total                |         | 9     | 100%  |

**Table 2 (top).** Characteristics of patients with breast cancer who received neoadjuvant chemotherapy (NAC, anthracyclines/taxanes) (N = 9).

synchronous

metachronous



**Figure 2 (top).** Occurrence of individual *PALB2* variants. Although recurrent germline *PALB2* mutations were identified, unique mutations affecting different genomic locations were observed, highlighting the need for NGS-based analysis.